Nonparametric estimation of multivariate extreme-value copulas
نویسندگان
چکیده
منابع مشابه
Nonparametric estimation of an extreme-value copula in arbitrary dimensions
Inference on an extreme-value copula usually proceeds via its Pickands dependence function, which is a convex function on the unit simplex satisfying certain inequality constraints. In the setting of an iid random sample from a multivariate distribution with known margins and unknown extreme-value copula, an extension of the Capéraà–Fougères–Genest estimator was introduced by D. Zhang, M. T. We...
متن کاملGeD spline estimation of multivariate Archimedean copulas
A new multivariate Archimedean copula estimation method is proposed in a non-parametric setting. The method uses the so called Geometrically Designed splines (GeD splines), recently introduced by Kaishev et al. (2006 a,b) [10] and [11], to represent the cdf of a random variable Wθ, obtained through the probability integral transform of an Archimedean copula with parameter θ. Sufficient conditio...
متن کاملMultivariate Nonparametric Volatility Density Estimation
We consider a continuous-time stochastic volatility model. The model contains a stationary volatility process, the multivariate density of the finite dimensional distributions of which we aim to estimate. We assume that we observe the process at discrete instants in time. The sampling times will be equidistant with vanishing distance. A multivariate Fourier-type deconvolution kernel density est...
متن کاملNonparametric estimation of conditional value-at-risk and expected shortfall based on extreme value theory
Abstract. We propose nonparametric estimators for conditional value-at-risk (VaR) and expected shortfall (ES) associated with conditional distributions of a series of returns on a financial asset. The return series and the conditioning covariates, which may include lagged returns and other exogenous variables, are assumed to be strong mixing and follow a fully nonparametric conditional location...
متن کاملhigh volatility, thick tails and extreme value theory in value at risk estimation: the case of liability insurance in iran insurance company
در این بررسی ابتدا به بررسی ماهیت توزیع خسارات پرداخته میشود و از روش نظریه مقادیر نهایی برای بدست آوردن برآورد ارزش در معرض خطر برای خسارات روزانه بیمه مسئولیت شرکت بیمه ایران استفاده میشود. سپس کارایی نظریه مقدار نهایی در برآورد ارزش در معرض خطر با کارایی سایر روشهای واریانس ، کواریانس و روش شبیه سازی تاریخی مورد مقایسه قرار میگیرد. نتایج این بررسی نشان میدهند که توزیع ،garch شناخته شده مدل...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Planning and Inference
سال: 2012
ISSN: 0378-3758
DOI: 10.1016/j.jspi.2012.05.007